Full text

Turn on search term navigation

© 2020 Shimizu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

Pulse wave velocity (PWV), an indicator of vascular stiffness, increases with age and is increasingly recognized as an independent risk factor for cardiovascular disease (CVD). Although many mechanical and chemical factors underlie the stiffness of the elastic artery, genetic risk factors related to age-dependent increases in PWV in apparently healthy people are largely unknown. The transcription factor nuclear factor E2 (NF-E2)-related factor 2 (Nrf2), which is activated by unidirectional vascular pulsatile shear stress or oxidative stress, regulates vascular redox homeostasis. Previous reports have shown that a SNP in the NRF2 gene regulatory region (−617C>A; hereafter called SNP−617) affects NRF2 gene expression such that the minor A allele confers lower gene expression compared to the C allele, and it is associated with various diseases, including CVD. We aimed to investigate whether SNP−617 affects vascular stiffness with aging in apparently healthy people.

Methods

Analyzing wide-ranging data obtained from a public health survey performed in Japan, we evaluated whether SNP−617 affected brachial-ankle PWV (baPWV) in never-smoking healthy subjects (n = 642). We also evaluated the effects of SNP−617 on other cardiovascular and blood test measurements.

Results

We have shown that not only AA carriers (n = 55) but also CA carriers (n = 247) show arterial stiffness compared to CC carriers (n = 340). Furthermore, SNP−617 also affected blood pressure indexes such as systolic blood pressure and mean arterial pressure but not the ankle brachial pressure index, an indicator of atherosclerosis. Multivariate analysis showed that SNP−617 accelerates the incremental ratio of baPWV with age.

Conclusions

This study is the first to show that SNP−617 affects the age-dependent increase in vascular stiffness. Our results indicate that low NRF2 activity induces premature vascular aging and could be targeted for the prevention of cardiovascular diseases associated with aging.

Details

Title
Association of single nucleotide polymorphisms in the NRF2 promoter with vascular stiffness with aging
Author
Shimizu, Sunao; Mimura, Junsei; Hasegawa, Takanori; Shimizu, Eigo; Imoto, Seiya; Tsushima, Michiko; Kasai, Shuya; Yamazaki, Hiromi; Ushida, Yusuke; Suganuma, Hiroyuki; Tomita, Hirofumi; Yamamoto, Masayuki; Nakaji, Shigeyuki; Itoh, Ken
First page
e0236834
Section
Research Article
Publication year
2020
Publication date
Aug 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2432836711
Copyright
© 2020 Shimizu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.