Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Peak-load forecasting prevents energy waste and helps with environmental issues by establishing plans for the use of renewable energy. For that reason, the subject is still actively studied. Most of these studies are focused on improving predictive performance by using varying feature information, but most small industrial facilities cannot provide such information because of a lack of infrastructure. Therefore, we introduce a series of studies to implement a generalized prediction model that is applicable to these small industrial facilities. On the basis of the pattern of load information of most industrial facilities, new features were selected, and a generalized model was developed through the aggregation of ensemble models. In addition, a new method is proposed to improve prediction performance by providing additional compensation to the prediction results by reflecting the fewest opinions among the prediction results of each model. Actual data from two small industrial facilities were applied to our process, and the results proved the effectiveness of our proposed method.

Details

Title
Peak-Load Forecasting for Small Industries: A Machine Learning Approach
Author
Dong-Hoon, Kim  VIAFID ORCID Logo  ; Eun-Kyu, Lee  VIAFID ORCID Logo  ; Naik Bakht Sania Qureshi
First page
6539
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434691402
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.