It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We illustrated HiSIF outperformed other tools for identifying chromatin loops. We applied it to Hi-C data in breast cancer cells and identified 21 genes with gained loops showing worse relapse-free survival in endocrine-treated patients, suggesting the genes with enhanced loops can be used for prognostic signatures for measuring the outcome of the endocrine treatment. HiSIF is available at https://github.com/yufanzhouonline/HiSIF.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer