It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The deubiquitinating (DUB) enzyme ubiquitin-specific protease 18 (USP18), also known as UBP43, is an ubiquitin-specific protease linked to several human malignancies. However, USP18’s underlying function in human cervical cancer remains unclear. In the current study, we aimed to analyse the role of USP18 and its signalling pathways in cervical cancer.
Methods
Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to analyse USP18 levels in cervical cancer and matched to adjacent normal tissues. Moreover, RNA interference (RNAi) and lentiviral-mediated vector transfections were performed to silence and overexpress USP18, respectively, in cervical cancer cells. Further, Cell Counting Kit-8 (CCK-8) and Annexin V/PI staining assays were used to assess its biological function in cell proliferation and apoptosis, respectively. A xenograft model was used to examine USP18’s function in vivo.
Results
The present findings demonstrated that USP18 was overexpressed in cervical cancer specimens and cell lines. Silencing USP18 in SiHa and Caski cervical cancer cell lines inhibited cell proliferation, induced apoptosis, and promoted cleaved caspase-3 expression. In contrast, USP18 overexpression showed the opposite effects in human HcerEpic cells. A Gene Set Enrichment Analysis revealed that USP18 was enriched in the PI3K/AKT signalling pathway in cervical cancer. Hence, the PI3K/AKT inhibitor LY294002 was used to determine the relationship between USP18 and AKT in cervical cancer cells. Importantly, LY294002 significantly abolished the effects of USP18 overexpression in cervical cancer cells. In vivo, USP18 silencing inhibited human cervical cancer cells’ tumorigenicity.
Conclusions
The current study indicates that USP18 is an oncogenic gene in cervical cancer. Our findings not only deepened the understanding of USP18’s biological function in cervical cancer pathogenesis, but we also provided novel insight for cervical cancer therapy.
Trial registration
Retrospectively registered.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer