It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hyperspectral data recorded by future earth observation satellites will have up to hundreds of narrow bands that cover a wide range of the electromagnetic spectrum. The spatial resolution (around 30 meters) of such data, however, can impede the integration of the spatial domain for a classification due to spectrally mixed pixels and blurred edges in the data. Hence, the ability of performing a meaningful classification only relying on spectral information is important. In this study, a model for the spectral classification of hyperspectral data is derived by strategically optimizing a convolutional neural network (1D-CNN). The model is pre-trained and optimized on imagery of different nuts, beans, peas and dried fruits recorded with the Cubert ButterflEye X2 sensor. Subsequently, airborne hyperspectral datasets (Greding, Indian Pines and Pavia University) are used to evaluate the CNN's capability of transfer learning. For that, the datasets are classified with the pre-trained weights and, for comparison, with the same model architecture but trained from scratch with random weights. The results show substantial differences in classification accuracies (from 71.8% to 99.8% overall accuracy) throughout the used datasets, mainly caused by variations in the number of training samples, the spectral separability of the classes as well as the existence of mixed pixels for one dataset. For the dataset that is classified least accurately, the greatest improvement with pre-training is achieved (difference of 3.3% in overall accuracy compared to the non-pre-trained model). For the dataset that is classified with the highest accuracy, no significant transfer learning was observed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Karlsruhe University of Applied Sciences Karlsruhe, Faculty for Information Management and Media, Germany; Karlsruhe University of Applied Sciences Karlsruhe, Faculty for Information Management and Media, Germany
2 Fraunhofer IOSB, Ettlingen, Germany; Fraunhofer IOSB, Ettlingen, Germany