Abstract

We study the propagation of probe scalar fields in the background of 4D Einstein–Gauss–Bonnet black holes with anti-de Sitter (AdS) asymptotics and calculate the quasinormal modes. Mainly, we show that the quasinormal spectrum consists of two different branches, a branch perturbative in the Gauss–Bonnet coupling constant α and another branch, nonperturbative in α. The perturbative branch consists of complex quasinormal frequencies that approximate the quasinormal frequencies of the Schwarzschild AdS black hole in the limit of a null coupling constant. On the other hand, the nonperturbative branch consists of purely imaginary frequencies and is characterized by the growth of the imaginary part when α decreases, diverging in the limit of null coupling constant; therefore they do not exist for the Schwarzschild AdS black hole. Also, we find that the imaginary part of the quasinormal frequencies is always negative for both branches; therefore, the propagation of scalar fields is stable in this background.

Details

Title
Perturbative and nonperturbative quasinormal modes of 4D Einstein–Gauss–Bonnet black holes
Author
Aragón Almendra 1 ; Bécar Ramón 2 ; González, P A 1 ; Vásquez Yerko 3 

 Universidad Diego Portales, Facultad de Ingeniería y Ciencias, Santiago, Chile (GRID:grid.412193.c) (ISNI:0000 0001 2150 3115) 
 Universidad Católica de Temuco, Departamento de Ciencias Matemáticas y Físicas, Temuco, Chile (GRID:grid.264732.6) (ISNI:0000 0001 2168 1907) 
 Universidad de La Serena, Departamento de Física y Astronomía, Facultad de Ciencias, La Serena, Chile (GRID:grid.19208.32) (ISNI:0000 0001 0161 9268) 
Publication year
2020
Publication date
Aug 2020
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436976022
Copyright
© The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.