Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The knowledge of tree characteristics, especially the shape of standing trees, is important for living tree volume estimation, the computation of a wide range of forest stand features, and the evaluation of stand stability. Nowadays, nondestructive and accurate approaches to data collection in the forest environment are required. Therefore, the implementation of accurate point cloud-based information in the field of forest inventory has become increasingly required. We evaluated the stem curves of the lower part of standing trees (diameters at heights of 0.3 m to 8 m). The experimental data were acquired from three point cloud datasets, which were created through different approaches to three-dimensional (3D) environment modeling (varying in terms of data acquisition and processing time, acquisition costs, and processing complexity): terrestrial laser scanning (TLS), close-range photogrammetry (CRP), and handheld mobile laser scanning (HMLS) with a simultaneous localization and mapping algorithm (SLAM). Diameter estimation errors varied across heights of cross sections and methods. The average root mean squared error (RMSE) of all cross sections for the specific methods was 1.03 cm (TLS), 1.26 cm (HMLS), and 1.90 cm (CRP). TLS and CRP reached the lowest RMSE at a height of 1.3 m, while for HMLS, it was at the height of 8 m. Our findings demonstrated that the accuracy of measurements of the standing tree stem curve was comparable for the usability of all three devices in forestry practices.

Details

Title
The Comparison of Stem Curve Accuracy Determined from Point Clouds Acquired by Different Terrestrial Remote Sensing Methods
Author
Hunčaga, Milan; Chudá, Juliána; Tomaštík, Julián  VIAFID ORCID Logo  ; Slámová, Martina  VIAFID ORCID Logo  ; Koreň, Milan  VIAFID ORCID Logo  ; Chudý, František
First page
2739
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2438163709
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.