Full Text

Turn on search term navigation

Copyright © 2020 Xiaofeng Xue et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

A plane Hermitian wavelet finite element method is presented in this paper. Wave motion can be used to analyze plane structures with small defects such as cracks and obtain results. By using the tensor product of modified Hermitian wavelet shape functions, the plane Hermitian wavelet shape functions are constructed. Scale functions of Hermitian wavelet shape functions can replace the polynomial shape functions to construct new wavelet plane elements. As the scale of the shape functions increases, the precision of the new wavelet plane element will be improved. The new Hermitian wavelet finite element method which can be used to simulate wave motion analysis can reveal the law of the wave motion in plane. By using the results of transmitted and reflected wave motion, the cracks can be easily identified in plane. The results show that the new Hermitian plane wavelet finite element method can use the fewer elements to simulate the plane structure effectively and accurately and detect the cracks in plane.

Details

Title
Wave Motion Analysis in Plane via Hermitian Cubic Spline Wavelet Finite Element Method
Author
Xue, Xiaofeng 1   VIAFID ORCID Logo  ; Wang, Xinhai 1 ; Wang, Zhen 1 ; Xue, Wei 1 

 Mechanical and Electrical Engineering Department, Yuncheng University, Yuncheng 044000, China 
Editor
Yongteng Zhong
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2440438668
Copyright
Copyright © 2020 Xiaofeng Xue et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/