Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In a series of experiments in an atmospheric simulation chamber (SAPHIR,

Simulation of Atmospheric PHotochemistry In a large Reaction

Forschungszentrum Jülich, Germany), NO3 reactivity (kNO3) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow tube reactor coupled to a cavity ring-down spectrometer (FT-CRDS). The experiments were carried out in both dry and humid air with variation of the initial mixing ratios of ozone (50–100 ppbv), isoprene (3–22 ppbv) andNO2 (5–30 ppbv). kNO3 was in excellent agreement with values calculated from the isoprene mixing ratio and the rate coefficient for the reaction of NO3 with isoprene. This result serves to confirm that the FT-CRDS returns accurate values of kNO3 even at elevated NO2 concentrations and to show that reactions of NO3 with stable reaction products like non-radical organic nitrates do not contribute significantly to NO3 reactivity during the oxidation of isoprene. A comparison of kNO3 with NO3 reactivities calculated from NO3 mixing ratios and NO3 production rates suggests that organic peroxy radicals and HO2 account for 50 % ofNO3 losses. This contradicts predictions based on numerical simulations using the Master Chemical Mechanism (MCM version 3.3.1) unless the rate coefficient for reaction between NO3 and isoprene-derived RO2 is roughly doubled to 5×10-12 cm3 molecule-1 s-1.

Details

Title
Evolution of NO3 reactivity during the oxidation of isoprene
Author
Dewald, Patrick 1 ; Liebmann, Jonathan M 1 ; Friedrich, Nils 1   VIAFID ORCID Logo  ; Shenolikar, Justin 1 ; Schuladen, Jan 1 ; Rohrer, Franz 2 ; Reimer, David 2 ; Tillmann, Ralf 2 ; Novelli, Anna 2   VIAFID ORCID Logo  ; Cho, Changmin 2   VIAFID ORCID Logo  ; Xu, Kangming 3 ; Holzinger, Rupert 3 ; Bernard, François 4 ; Zhou, Li 5 ; Mellouki, Wahid 5 ; Brown, Steven S 6 ; Fuchs, Hendrik 2   VIAFID ORCID Logo  ; Lelieveld, Jos 1   VIAFID ORCID Logo  ; Crowley, John N 1   VIAFID ORCID Logo 

 Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany 
 Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany 
 Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Utrecht, the Netherlands 
 Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France; now at: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Centre National de la Recherche Scientifique (CNRS), Université d'Orléans, Observatoire des Sciences de l'Univers en région Centre – Val de Loire (OSUC), Orléans, France 
 Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France 
 NOAA Chemical Sciences Laboratory, 325 Broadway, Boulder, CO 80305, USA; Department of Chemistry, University of Colorado Boulder, Boulder, CO 80209, USA 
Pages
10459-10475
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2440670015
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.