Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In many cities that have experienced rapid growth like Abu Dhabi, urban microclimate scenarios evolve rapidly as well and it is important to study the urban thermal dynamics continuously. The Local Climate Zone (LCZ) classification considers factors related to the physical properties like surface cover and surface structure of the city which allow to analyze urban heat flows. Abu Dhabi city is rapidly expanding and is characterized by highly heterogeneous types of built forms that comprise mainly of old mid-rise and modern high-rise buildings with varied degrees of vegetation cover in different parts of the city. The fact that it is a coastal city in a desert environment makes it quite unique. This paper presents an approach of studying urban heat flows in such heterogeneous setup. First, the city is classified into local climate zones using images acquired by Landsat Satellite. Numerical simulations are performed in the designated LCZs using a computational fluid dynamics software, Envi-met. The results of Envi-met are calibrated and validated using in-situ measurements across all four seasons. The calibrated models are then applied to study entire Abu Dhabi island across different seasons. The results indicate a clear presence of urban heat island (UHI) effect when averaged over the full day which is varying in different zones. The zones with high vegetation do not show large average UHI effect whereas the effect is significant in densely built zones. The study also validates previous observations on the inversion of UHI effect during the day and in terms of diurnal response.

Details

Title
A Study of Local Climate Zones in Abu Dhabi with Urban Weather Stations and Numerical Simulations
Author
Manandhar, Prajowal 1 ; Bande, Lindita 2 ; Tsoupos, Alexandros 1 ; Prashanth Reddy Marpu 3   VIAFID ORCID Logo  ; Armstrong, Peter 4 

 National Space Science and Technology Center, UAE University, Al Ain 15551, UAE; [email protected] 
 Department of Architectural Engineering, College of Engineering, UAE University, Al Ain 15551, UAE; [email protected] 
 Department of Electrical Engineering and Computer Science, Khalifa University, Masdar Campus, P.O. Box 54224, Abu Dhabi, UAE; [email protected] 
 Department of Mechanical Engineering, Khalifa University, Masdar Campus, P.O. Box 54224, Abu Dhabi, UAE; [email protected] 
First page
156
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2441209787
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.