Content area

Abstract

Current advances in Pervasive Computing (PC) involve the adoption of the huge infrastructures of the Internet of Things (IoT) and the Edge Computing (EC). Both, IoT and EC, can support innovative applications around end users to facilitate their activities. Such applications are built upon the collected data and the appropriate processing demanded in the form of requests. To limit the latency, instead of relying on Cloud for data storage and processing, the research community provides a number of models for data management at the EC. Requests, usually defined in the form of tasks or queries, demand the processing of specific data. A model for pre-processing the data preparing them and detecting their statistics before requests arrive is necessary. In this paper, we propose a promising and easy to implement scheme for selecting the appropriate host of the incoming data based on a probabilistic approach. Our aim is to store similar data in the same distributed datasets to have, beforehand, knowledge on their statistics while keeping their solidity at high levels. As solidity, we consider the limited statistical deviation of data, thus, we can support the storage of highly correlated data in the same dataset. Additionally, we propose an aggregation mechanism for outliers detection applied just after the arrival of data. Outliers are transferred to Cloud for further processing. When data are accepted to be locally stored, we propose a model for selecting the appropriate datasets where they will be replicated for building a fault tolerant system. We analytically describe our model and evaluate it through extensive simulations presenting its pros and cons.

Details

1009240
Business indexing term
Title
A Probabilistic Approach for Data Management in Pervasive Computing Applications
Publication title
arXiv.org; Ithaca
Publication year
2020
Publication date
Sep 10, 2020
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2020-09-11
Milestone dates
2020-09-10 (Submission v1)
Publication history
 
 
   First posting date
11 Sep 2020
ProQuest document ID
2441675749
Document URL
https://www.proquest.com/working-papers/probabilistic-approach-data-management-pervasive/docview/2441675749/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2022-08-17
Database
ProQuest One Academic