Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The advances in computational fluid dynamics have made numerical modeling a reliable complementary tool to the traditional physical modeling in the study of the wave overtopping phenomenon. This paper addresses overtopping on a seawall by combining the numerical models XBeach (non-hydrostatic and Surfbeat modes) and IH2VOF, and the Mase formulas. This work is structured in two phases: (i) phase I assesses the performance of numerical models and formulas in modeling wave run-up and overtopping on a seawall for a solid profile bottom and representative hydro-morphologic conditions of a study site in the Portuguese west coast; (ii) phase II investigates the effect of the profile bottom variation in the overtopping phenomenon for extreme maritime storm field conditions of the study site, considering a solid bottom and a varying sandy bottom. The results indicate that XBeach underestimates the wave energy, and the frequency and intensity of the overtopping occurrences predicted by IH2VOF; the numerical models’ run-up and overtopping discharge predictions are overestimated by the Mase formulas, in simplified and in storm field conditions; and the variation of the bottom morphology throughout the storm event greatly influences the XBeach predictions, while the Mase results are mostly influenced by the bottom roughness.

Details

Title
Modeling Wave Overtopping on a Seawall with XBeach, IH2VOF, and Mase Formulas
Author
Oliveira, João Nuno C; Filipa S B F Oliveira; Maria Graça Neves  VIAFID ORCID Logo  ; Clavero, María  VIAFID ORCID Logo  ; Trigo-Teixeira, António A
First page
2526
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2442535376
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.