Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Convolutional neural networks provide an ideal solution for hyperspectral image (HSI) classification. However, the classification effect is not satisfactory when limited training samples are available. Focused on “small sample” hyperspectral classification, we proposed a novel 3D-2D-convolutional neural network (CNN) model named AD-HybridSN (Attention-Dense-HybridSN). In our proposed model, a dense block was used to reuse shallow features and aimed at better exploiting hierarchical spatial–spectral features. Subsequent depth separable convolutional layers were used to discriminate the spatial information. Further refinement of spatial–spectral features was realized by the channel attention method and spatial attention method, which were performed behind every 3D convolutional layer and every 2D convolutional layer, respectively. Experiment results indicate that our proposed model can learn more discriminative spatial–spectral features using very few training data. In Indian Pines, Salinas and the University of Pavia, AD-HybridSN obtain 97.02%, 99.59% and 98.32% overall accuracy using only 5%, 1% and 1% labeled data for training, respectively, which are far better than all the contrast models.

Details

Title
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
Author
Zhang, Jin; Wei, Fengyuan; Fan, Feng; Wang, Chunyang
First page
5191
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2442747590
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.