Full Text

Turn on search term navigation

© 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While the utility of circulating cell‐free DNA (cfDNA) in cancer screening and early detection have recently been investigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and structural features is developed. First, the potential of cfDNA quantitative and structural parameters is independently demonstrated in cell culture, murine, and human plasma models. Subsequently, these variables are evaluated in a large retrospective cohort of 289 healthy individuals and 983 patients with various cancer types; after age resampling, this evaluation is done independently and the variables are combined using a machine learning approach. Implementation of a decision tree prediction model for the detection and classification of healthy and cancer patients shows unprecedented performance for 0, I, and II colorectal cancer stages (specificity, 0.89 and sensitivity, 0.72). Consequently, the methodological proof of concept of using both quantitative and structural biomarkers, and classification with a machine learning method are highlighted, as an efficient strategy for cancer screening. It is foreseen that the classification rate may even be improved by the addition of such biomarkers to fragmentomics, methylation, or the detection of genetic alterations. The optimization of such a multianalyte strategy with this machine learning method is therefore warranted.

Details

Title
Machine Learning‐Assisted Evaluation of Circulating DNA Quantitative Analysis for Cancer Screening
Author
Tanos, Rita 1 ; Tosato, Guillaume 2 ; Otandault, Amaelle 1 ; Zahra Al Amir Dache 1 ; Laurence Pique Lasorsa 1 ; Tousch, Geoffroy 1 ; Safia El Messaoudi 1 ; Meddeb, Romain 1 ; Mona Diab Assaf 3 ; Ychou, Marc 1 ; Stanislas Du Manoir 1 ; Pezet, Denis 4 ; Gagnière, Johan 4 ; Pierre‐Emmanuel Colombo 5 ; Jacot, William 5 ; Assénat, Eric 6 ; Dupuy, Marie 7 ; Adenis, Antoine 1 ; Thibault Mazard 1 ; Mollevi, Caroline 1 ; Sayagués, José María 8 ; Colinge, Jacques 1 ; Thierry, Alain R 1   VIAFID ORCID Logo 

 IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; Institut régional du Cancer de Montpellier, Montpellier, France; Université de Montpellier, Montpellier, France 
 IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; Institut régional du Cancer de Montpellier, Montpellier, France; Université de Montpellier, Montpellier, France; CHU Lapeyronnie, Montpellier, France 
 Faculty of Science II, Department of Biochemistry, Lebanese University, Beirut, Lebanon 
 CHU Clermont‐Fd, Clermont‐Ferrand, France 
 Institut régional du Cancer de Montpellier, Montpellier, France 
 CHU Saint‐Eloi, Montpellier, France 
 CHU Lapeyronnie, Montpellier, France 
 Centro de Investigación del Cáncer, Cytometry General Service and Department of Medicine, University of Salamanca, Salamanca, Spain 
Section
Full Papers
Publication year
2020
Publication date
Sep 2020
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2444802769
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.