It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The MYC oncogene contributes to an estimated 100,000 cancer-related deaths annually in the United States and is associated with aggressive tumor progression and poor clinical outcome. MYC is a nuclear transcription factor that regulates a myriad of cellular activities and has direct interactions with hundreds of proteins, which has made a unified understanding of its function historically difficult.
In recent years, several groups have put forth a new hypothesis that questions the prevailing view of MYC as a gene-specific transcription factor and instead envision it as a global amplifier of gene expression. Instead of being an on/off switch for transcription, MYC is proposed to act as a `volume knob' to amplify and sustain the active gene expression program in a cell. The scope of the amplifier model remains controversial in part because studies of MYC largely consist of cell population-based measurements obtained at fixed timepoints, which makes distinguishing direct from indirect consequences on gene expression difficult. A high-temporal, high-spatial precision viewpoint of how MYC acts in single living cells does not exist.
To evaluate the competing hypotheses of MYC function, we developed a single-cell assay for precisely controlling MYC and interrogating the effects on transcription in living cells. We engineered `Pi-MYC,' an optogenetic variant of MYC that is biologically active, can be visualized under the microscope, and can be controlled with light. We combined Pi-MYC with single-molecule imaging methods to obtain the first real-time observations of how MYC affects RNA production and transcription factor mobility in single cells. We show that MYC increases the duration of active periods of genes population-wide, and globally affects the binding dynamics of core transcription factors involved in RNA Polymerase II transcription complex assembly and productive elongation. These findings provide living, single-cell evidence of MYC as a global amplifier of gene expression, and suggests the mechanism is by stabilizing the active period of a gene through interactions with core transcription machinery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






