It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Palos Verdes fault (PVF) is an active component of the Inner California Borderland offshore strike-slip fault system that collectively accommodates ~6-8 mm/yr of Pacific-North American plate boundary shear. The PVF extends ~100 km from Santa Monica Bay in the north, across the Palos Verdes Peninsula, through the San Pedro Shelf and Slope to Lasuen Knoll in the Gulf of Santa Catalina. Slip rate estimates for the PVF range from ~1.5 to 3 mm/yr, and magnitude-length scaling relationships indicate the fault could generate a M 7.3 event. Despite posing a significant hazard for coastal communities in Southern California, the geometry at the northern and southern extents of the PVF remains poorly constrained. Several models have been proposed to explain the southern fault termination and the potential for connectivity with neighboring faults, the uncertainty of which has implications for seismic hazard analysis. These models include: 1) a throughgoing linkage between the PVF and Coronado Bank fault, 2) slip transfer between the PVF and the Newport-Inglewood-Rose Canyon fault along a distributed system of faults on the northeast side of Lasuen Knoll, and through faults in the San Mateo Trend, 3) PVF termination in a horsetail-splay southwest of Lasuen Knoll, and 4) thrust fault termination of the PVF at Lasuen Knoll.
Observations are presented from focused high-resolution 2D multichannel seismic reflection, and multibeam bathymetry surveys to reduce uncertainty in fault geometry and distinguish between the proposed fault termination and connectivity models. This study also incorporates, deep-penetration, low-resolution legacy industry seismic, and high-resolution legacy USGS seismic data to provide a higher density and distribution of datasets at different resolutions. A stratigraphic framework is constructed by extending late Quaternary stratigraphic markers throughout the study area. A sequence stratigraphic approach is used to interpret relative timing of fault-related deformation. This framework enables us to create a fault classification map and make temporal correlations between faults inferred to have mutual connectivity. The proposed models for kinematic-linkage or termination at the southern PVF are evaluated based on the analysis and interpretation of observations as compared to the expected style and location of deformation predicted by established models.
This study interprets a southward growth of east-west trending compressional folds northeast of the southern PVF that correspond with high relief at Lasuen Knoll. The folding is bound to the south by a deformation front that extends eastward from a ~1 km restraining bend in the PVF. North-dipping thrust faults are interpreted along the deformation front trending parallel to the folds. The compressional structures match the predicted style of deformation found in the contractional quadrant around right-lateral strike-slip fault-tip damage zones. Similarly, a potentially active extensional horsetail-splay damage zone is observed south of the termination, in the dilational quadrant. No evidence is found for kinematic or temporal linkage between the PVF and Coronado Bank fault, supporting more recent mapping by other Borderland researchers. Eliminating this connection model from future hazard forecasting models is recommended. Furthermore, no evidence for linkage between the PVF and Newport-Inglewood-Rose Canyon fault system or the faults of the San Mateo Trend is observed in the data. Lastly, a hybrid model of strike-slip fault termination is presented that is consistent with the extensional and compressional deformational patterns observed at the southern termination of the PVF at Lasuen Knoll. This work serves to reduce uncertainty in seismic hazard analysis and future rupture forecasting models, and provide updated structural, stratigraphic, and fault activity mapping for this portion of the Gulf of Santa Catalina.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
Supplemental files
Document includes 2 supplemental file(s). Download all files - Zip (22.4 MB)
Special programs or plug-ins may be required to view some files.
The supplemental file or files you are about to download were provided to ProQuest by the author as a part of a dissertation or thesis. The supplemental files are provided "AS IS" without any warranty. ProQuest is not responsible for the content, format or impact of the supplemental file(s) on your system. In some cases, the file type may be unknown or may be a .exe file. We recommend caution as you open such files.
Copyright of original materials contained in a supplemental files is retained by the author and your access to the supplemental files is subject to the ProQuest Terms and Conditions of use.
Downloading time depends on the size of the file(s) that you are downloading. System may take some time to download them.Please be patient.
The supplemental file or files you are about to download were provided to ProQuest by the author as a part of a dissertation or thesis. The supplemental files are provided "AS IS" without any warranty. ProQuest is not responsible for the content, format or impact of the supplemental file(s) on your system. In some cases, the file type may be unknown or may be a .exe file. We recommend caution as you open such files.
Copyright of original materials contained in a supplemental files is retained by the author and your access to the supplemental files is subject to the ProQuest Terms and Conditions of use.
Downloading time depends on the size of the file(s) that you are downloading. System may take some time to download them.Please be patient.





