It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Malaria rapid diagnostic tests (RDTs) have greatly improved access to diagnosis in endemic countries. Most RDTs detect Plasmodium falciparum histidine-rich protein 2 (HRP2), but their sensitivity is seriously threatened by the emergence of pfhrp2-deleted parasites. RDTs detecting P. falciparum or pan-lactate dehydrogenase (Pf- or pan-LDH) provide alternatives. The objective of this study was to systematically assess the performance of malaria RDTs against well-characterized pfhrp2-deleted P. falciparum parasites.
Methods
Thirty-two RDTs were tested against 100 wild-type clinical isolates (200 parasites/µL), and 40 samples from 10 culture-adapted and clinical isolates of pfhrp2-deleted parasites. Wild-type and pfhrp2-deleted parasites had comparable Pf-LDH concentrations. Pf-LDH-detecting RDTs were also tested against 18 clinical isolates at higher density (2,000 parasites/µL) lacking both pfhrp2 and pfhrp3.
Results
RDT positivity against pfhrp2-deleted parasites was highest (> 94%) for the two pan-LDH-only RDTs. The positivity rate for the nine Pf-LDH-detecting RDTs varied widely, with similar median positivity between double-deleted (pfhrp2/3 negative; 63.9%) and single-deleted (pfhrp2-negative/pfhrp3-positive; 59.1%) parasites, both lower than against wild-type P. falciparum (93.8%). Median positivity for HRP2-detecting RDTs against 22 single-deleted parasites was 69.9 and 35.2% for HRP2-only and HRP2-combination RDTs, respectively, compared to 96.0 and 92.5% for wild-type parasites. Eight of nine Pf-LDH RDTs detected all clinical, double-deleted samples at 2,000 parasites/µL.
Conclusions
The pan-LDH-only RDTs evaluated performed well. Performance of Pf-LDH-detecting RDTs against wild-type P. falciparum does not necessarily predict performance against pfhrp2-deleted parasites. Furthermore, many, but not all HRP2-based RDTs, detect pfhrp2-negative/pfhrp3-positive samples, with implications for the HRP2-based RDT screening approach for detection and surveillance of HRP2-negative parasites.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer