Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Acoustic backscatter data are widely applied to study the distribution characteristics of seabed sediments. However, the ghosting and mosaic errors in backscatter images lead to interference information being introduced into the feature extraction process, which is conducted with a convolutional neural network or auto encoder. In addition, the performance of the existing classifiers is limited by such incorrect information, meaning it is difficult to achieve fine classification in survey areas. Therefore, we propose a sediment classification method based on the acoustic backscatter image by combining a stacked denoising auto encoder (SDAE) and a modified extreme learning machine (MELM). The SDAE is used to extract the deep-seated sediment features, so that the training network can automatically learn to remove the residual errors from the original image. The MELM model, which integrates weighted estimation, a Parzen window and particle swarm optimization, is applied to weaken the interference of mislabeled samples on the training network and to optimize the random expression of input layer parameters. The experimental results show that the SDAE-MELM method greatly reduces mutual interference between sediment types, while the sediment boundaries are clear and continuous. The reliability and robustness of the proposed method are better than with other approaches, as assessed by the overall classification effect and comprehensive indexes.

Details

Title
Sediment Classification of Acoustic Backscatter Image Based on Stacked Denoising Autoencoder and Modified Extreme Learning Machine
First page
3762
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2462585862
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.