Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chagas disease is a major public health problem in Latin America. The mixed Th1/Th2 immune response is required against Trypanosoma cruzi. Electrolyzed oxidizing water (EOW) has been shown to have germicidal efficacy. The objective of this study was to evaluate the EOW effectiveness in T. cruzi-infected BALB/c mice clinically, immunologically, and histologically. The severity of the infection was assessed by parasitaemia, general health condition, mortality, mega syndromes, and histological lesions. IgG, TNF-alpha, IFN-gamma, and IL-1 beta levels were quantified. The EOW administration showed a beneficial effect on parasitaemia, general physical condition, and mortality. High levels of IgG1 at 50 days postinfection were observed. Prophylactic EOW treatment was able to induce a predominantly TH1 immune response based on an IgG2a levels increase at the late acute phase, and a 10-fold increase of IFN-gamma in whole acute phase. EOW was able to control the acute phase infection as effectively as benznidazole. Splenomegaly was caused by EOW treatment and lymphadenopathy was stimulated by T. cruzi infection in all groups. Severe tissue damage was not prevented by EOW treatments. Moderate efficacy may be due to immunomodulatory properties and not to a direct toxic effect on the parasite.

Details

Title
Electrolyzed Oxidizing Water Modulates the Immune Response in BALB/c Mice Experimentally Infected with Trypanosoma cruzi
Author
Rodríguez-Morales, Olivia 1   VIAFID ORCID Logo  ; Cabrera-Mata, Juan José 1 ; del C Carrillo-Sánchez, Silvia 1 ; Gutiérrez-Ocejo, Rodolfo A 1 ; Baylón-Pacheco, Lidia 2 ; Pérez-Reyes, Olga L 3 ; Rosales-Encina, José Luis 2   VIAFID ORCID Logo  ; Aranda-Fraustro, Alberto 3 ; Hernández-García, Sergio 4 ; Arce-Fonseca, Minerva 1 

 Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; [email protected] (O.R.-M.); [email protected] (J.J.C.-M.); [email protected] (S.d.C.C.-S.); [email protected] (R.A.G.-O.) 
 Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; [email protected] (L.B.-P.); [email protected] (J.L.R.-E.) 
 Department of Pathology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; [email protected] (O.L.P.-R.); [email protected] (A.A.-F.) 
 Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; [email protected] 
First page
974
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20760817
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2464928828
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.