Full Text

Turn on search term navigation

Copyright © 2020 Mutlaq S. Aljahdali and Ahmed A. El-Sherif. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

(E)-N,N-Dimethyl-2-((E-1-(2-(p-tolyl)hydrazono)propan-2-ylidene)hydrazine-1-carbothioamide (DMPTHP) and their Zn(II) and Cd(II) complexes have been synthesized and characterized. Different tools of analysis such as elemental analyses, IR, mass spectra, and 1H-NMR measurements were used to elucidate the structure of the synthesized compounds. According to these spectral results, the DMPTHP ligand behaved as a mononegatively charged tridentate anion. Modeling and docking studies were investigated and discussed. Novel Schiff base (DMPTHP) ligand protonation constants and their formation constants with Cd(II) and Zn(II) ions were measured in 50% DMSO solution at 15°C, 25°C, and 35°C at I = 0.1 mol·dm−3 NaNO3. The solution speciation of different species was measured in accordance with pH. Calculation and discussion of the thermodynamic parameters were achieved. Both log K1 and –ΔH1, for M(II)-thiosemicarbazone complexes were found to be somewhat larger than log K2 and –ΔH2, demonstrating a shift in the dentate character of DMPTHP from tridentate in 1 : 1 chelates to bidentate in 1 : 2; M : L chelates and steric hindrance were generated by addition of the 2nd molecule. The compounds prepared have significant activity as antioxidants, similar to ascorbic acid. It is hoped that the results will be beneficial to antimicrobial agent chemistry. The formed compounds acted as a potent antibacterial agent. Molecular docking studies were investigated and have proved that DMPTHP as antibacterial agents act on highly resistant strains of E. coli and also as an anticancer agent.

Details

Title
Synthesis and Biological Evaluation of Novel Zn(II) and Cd(II) Schiff Base Complexes as Antimicrobial, Antifungal, and Antioxidant Agents
Author
Aljahdali, Mutlaq S 1 ; El-Sherif, Ahmed A 2   VIAFID ORCID Logo 

 Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
 Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt 
Editor
Patrick Bednarski
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
15653633
e-ISSN
1687479X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2465234018
Copyright
Copyright © 2020 Mutlaq S. Aljahdali and Ahmed A. El-Sherif. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/