Content area

Abstract

Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications. However, due to the privacy concerns of devices and limited computation or communication resource of UAVs, it is impractical to send raw data of devices to UAV servers for model training. Moreover, due to the dynamic channel condition and heterogeneous computing capacity of devices in UAV-enabled networks, the reliability and efficiency of data sharing require to be further improved. In this paper, we develop an asynchronous federated learning (AFL) framework for multi-UAV-enabled networks, which can provide asynchronous distributed computing by enabling model training locally without transmitting raw sensitive data to UAV servers. The device selection strategy is also introduced into the AFL framework to keep the low-quality devices from affecting the learning efficiency and accuracy. Moreover, we propose an asynchronous advantage actor-critic (A3C) based joint device selection, UAVs placement, and resource management algorithm to enhance the federated convergence speed and accuracy. Simulation results demonstrate that our proposed framework and algorithm achieve higher learning accuracy and faster federated execution time compared to other existing solutions.

Details

1009240
Title
Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management
Publication title
arXiv.org; Ithaca
Publication year
2020
Publication date
Nov 28, 2020
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2020-12-01
Milestone dates
2020-11-28 (Submission v1)
Publication history
 
 
   First posting date
01 Dec 2020
ProQuest document ID
2465900433
Document URL
https://www.proquest.com/working-papers/privacy-preserving-federated-learning-uav-enabled/docview/2465900433/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-03-01
Database
ProQuest One Academic