Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soft compliant strain gauges are key devices for wearable applications such as body health sensor systems, exoskeletons, or robotics. Other than traditional piezoresistive materials, such as metals and doped semiconductors placed on strain-sensitive microsystems, a class of soft porous materials with exotic mechanical properties, called auxetics, can be employed in strain gauges in order to boost their performance and add functionalities. For strain electronic read-outs, their polymeric structure needs to be made conductive. Herein, we present the fabrication process of an auxetic electrode based on a polymeric nanocomposite. A multiwalled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) is fabricated on an open-cell polyurethane (PU) auxetic foam and its effective usability as an electrode for strain-gauge sensors is assessed.

Details

Title
A Flexible Carbon Nanotubes-Based Auxetic Sponge Electrode for Strain Sensors
First page
2365
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2465910720
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.