Full text

Turn on search term navigation

© 2020 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leymus chinensis (L. chinensis) is the dominant plant in the eastern margins of the Eurasian temperate grasslands. It is a very robust species, exhibiting good saline-alkali resistance and stabilizing soil. In this study, 67 soil samples and L. chinensis were collected in western Jilin province, China. The contents of N, P, K, S, Mn, Fe, Zn, Cu and Na were measured, revealing that the growth of L. chinensis was mainly restricted by N based on the stoichiometric N: P ratios of plant. Furthermore, path analysis indicated that N was significantly correlated with K, S, Cu, and Zn. Imbalances in the homeostasis of these four elements may thus constrain N. The homeostasis index of Cu (HCu) in sites with 100%-70% of vegetation cover was only 0.79, it was classified as a sensitive element. However, K, S and Zn, whose concentrations in L. chinensis were significantly related to those of N, exhibited no homeostatic characteristics. These results suggest that when seeking to treat saline-alkali stress, it is important to add fertilizers containing K, S, and Zn to avoid growth limitation. Na+, an ion associated with high soil alkalinity, exhibited weak homeostasis in L. chinensis even in sites with only 40%-10% of vegetation cover. When soil Na exceeded 16000 mg/kg, the homeostasis mechanism of L. chinensis appeared to be overwhelmed, resulting in rapid and probably harmful accumulation of Na. Proper control of N content can alleviate the toxicity of Na stress in L. chinensis and enhance its Na tolerance. Together, these results suggest that combined fertilization with N, K, S, Zn and Cu should be applied to improve grasslands growth. The results of this study can provide a reference basis for sustainable grassland management.

Details

Title
Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil
Author
Liu, Hongshan; Li, Yuefen; Li, Shujie
First page
e0243172
Section
Research Article
Publication year
2020
Publication date
Dec 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2466020744
Copyright
© 2020 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.