Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Early breast cancer diagnosis is crucial, as it can prevent further complications and save the life of the patient by treating the disease at its most curable stage. In this paper, we propose a new artificial immune system model for associative classification with competitive performance for breast cancer detection. The proposed model has its foundations in the biological immune system; it mimics the detection skills of the immune system to provide correct identification of antigens. The Wilcoxon test was used to identify the statistically significant differences between our proposal and other classification algorithms based on the same bio-inspired model. These statistical tests evidenced the enhanced performance shown by the proposed model by outperforming other immune-based algorithms. The proposed model proved to be competitive with respect to other well-known classification models. In addition, the model benefits from a low computational cost. The success of this model for classification tasks shows that swarm intelligence is useful for this kind of problem, and that it is not limited to optimization tasks.

Details

Title
AISAC: An Artificial Immune System for Associative Classification Applied to Breast Cancer Detection
First page
515
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2468794003
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.