Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A new family of sterically hindered alkyl(tri-tert-butyl) phosphonium salts (n-CnH2n+1 with n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) was synthesized and evaluated as stabilizers for the formation of palladium nanoparticles (PdNPs), and the prepared PdNPs, stabilized by a series of phosphonium salts, were applied as catalysts of the Suzuki cross-coupling reaction. All investigated phosphonium salts were found to be excellent stabilizers of metal nanoparticles of small catalytically active size with a narrow size distribution. In addition, palladium nanoparticles exhibited exceptional stability: the presence of phosphonium salts prevented agglomeration and precipitation during the catalytic reaction.

Details

Title
Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization
First page
2457
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2469694902
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.