Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The proliferation and migration of vascular smooth muscle cells (VSMCs) are essential in the pathogenesis of various vascular diseases, such as atherosclerosis and restenosis. Among the mediators of VSMC during atherosclerosis development, platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs and greatly contributes to the intimal accumulation of VSMCs. Glossogyne tenuifolia (GT, Xiang-Ru) is a traditional antipyretic and hepatoprotective herb from Penghu Island, Taiwan. This study evaluated the inhibitory effect of GT ethanol extract (GTE) and GT water extract (GTW) on proliferative and migratory activities in PDGF-BB-induced VSMCs. The experimental results demonstrated that GTE significantly inhibited the PDGF-BB-stimulated VSMC proliferation and migration, as shown by MTT, wound healing, and Boyden chamber assays. GTE was found to have a much more potent inhibitory activity than GTW. Based on the Western blot analysis, GTE significantly blocked the PDGF-BB-induced phosphorylation of NF-κB and mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK), p38, and JNK, in VSMCs. In addition, GTE retarded the PDGF-BB-mediated migration through the suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression in VSMCs. Three main ingredients of GT—chlorogenic acid, luteolin-7-glucoside, and luteolin—all showed significant anti-proliferative effects on PDGF-BB-induced VSMCs. As a whole, our findings indicated that GTE has the potential to be a therapeutic agent to prevent or treat restenosis or atherosclerosis.

Details

Title
Glossogyne tenuifolia Attenuates Proliferation and Migration of Vascular Smooth Muscle Cells
First page
5832
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2470133504
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.