It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Time-resolved micro-CT is an increasingly powerful technique for studying dynamic processes in materials and structures. However, it is still difficult to study very fast processes with this technique, since fast scanning is typically associated with high image noise levels. We present weighted back projection, a technique applicable in iterative reconstruction methods using two types of prior knowledge: (1) a virtual starting volume resembling the sample, for example obtained from a scan before the dynamic process was initiated, and (2) knowledge on which regions in the sample are more likely to undergo the dynamic process. Therefore, processes on which this technique is applicable are preferably occurring within a static grid. Weighted back projection has the ability to handle small errors in the prior knowledge, while similar 4D micro-CT techniques require the prior knowledge to be exactly correct. It incorporates the prior knowledge within the reconstruction by using a weight volume, representing for each voxel its probability of undergoing the dynamic process. Qualitative analysis on a sparse subset of projection data from a real micro-CT experiment indicates that this method requires significantly fewer projection angles to converge to a correct volume. This can lead to an improved temporal resolution.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ghent University, UGCT/Radiation Physics, Dept. Physics and Astronomy, Ghent, Belgium (GRID:grid.5342.0) (ISNI:0000 0001 2069 7798)
2 Ghent University, UGCT / PProgRess, Dept. Geology, Ghent, Belgium (GRID:grid.5342.0) (ISNI:0000 0001 2069 7798)