Abstract

Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand concentration promises to tackle this challenge. However, current data analysis strategies use preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited comparability across datasets. Here, we present a method based on statistical hypothesis testing on curves, which provides control of the false discovery rate. We apply it to several datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug engagement, including the finding that the HDAC8 inhibitor PCI-34051 and its analog BRD-3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our method will facilitate prioritizing targets from thermal profiling experiments.

2D-thermal proteome profiling (2D-TPP) is a powerful assay for probing interactions of proteins with small molecules in their native context. Here the authors provide a statistical method for false discovery rate controlled analysis for 2D-TPP applications.

Details

Title
A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
Author
Kurzawa Nils 1   VIAFID ORCID Logo  ; Becher, Isabelle 2   VIAFID ORCID Logo  ; Sridharan Sindhuja 3   VIAFID ORCID Logo  ; Franken Holger 4 ; Mateus André 2   VIAFID ORCID Logo  ; Simon, Anders 5   VIAFID ORCID Logo  ; Bantscheff Marcus 4   VIAFID ORCID Logo  ; Huber, Wolfgang 2   VIAFID ORCID Logo  ; Savitski, Mikhail M 2   VIAFID ORCID Logo 

 Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (GRID:grid.4709.a) (ISNI:0000 0004 0495 846X); Heidelberg University, Faculty of Biosciences, Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373) 
 Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (GRID:grid.4709.a) (ISNI:0000 0004 0495 846X) 
 Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (GRID:grid.4709.a) (ISNI:0000 0004 0495 846X); GlaxoSmithKline, Cellzome GmbH, Heidelberg, Germany (GRID:grid.420105.2) (ISNI:0000 0004 0609 8483) 
 GlaxoSmithKline, Cellzome GmbH, Heidelberg, Germany (GRID:grid.420105.2) (ISNI:0000 0004 0609 8483) 
 Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2471564206
Copyright
© The Author(s) 2020. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.