It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Point defects in metal halide perovskites play a critical role in determining their properties and optoelectronic performance; however, many open questions remain unanswered. In this work, we apply impedance spectroscopy and deep-level transient spectroscopy to characterize the ionic defect landscape in methylammonium lead triiodide (MAPbI3) perovskites in which defects were purposely introduced by fractionally changing the precursor stoichiometry. Our results highlight the profound influence of defects on the electronic landscape, exemplified by their impact on the device built-in potential, and consequently, the open-circuit voltage. Even low ion densities can have an impact on the electronic landscape when both cations and anions are considered as mobile. Moreover, we find that all measured ionic defects fulfil the Meyer–Neldel rule with a characteristic energy connected to the underlying ion hopping process. These findings support a general categorization of defects in halide perovskite compounds.
Defects in perovskite affect the properties and performance in optoelectronic devices, yet the nature of ionic defects remains elusive. Here, the authors investigate the ionic defect landscape in perovskite introduced by varying precursor stoichiometry, and find the defects fulfill the Meyer-Neldel rule.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Technische Universität Chemnitz, Institut für Physik, Chemnitz, Germany (GRID:grid.6810.f) (ISNI:0000 0001 2294 5505)
2 Ruprecht-Karls-Universität Heidelberg, Kirchhoff-Institut für Physik and Centre for Advanced Materials, Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373); Technical University of Dresden, Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed), Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257)
3 Imperial College London, Department of Materials, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); Yonsei University, Department of Materials Science and Engineering, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454)