Abstract

Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.

Details

Title
Polycrystalline Ni nanotubes under compression: a molecular dynamics study
Author
Rojas-Nunez, J 1 ; Baltazar, S E 1 ; Gonzalez, R I 2 ; Bringa, E M 3 ; Allende, S 1 ; Kiwi, M 4 ; Valencia, F J 5 

 Universidad de Santiago de Chile, USACH, Departamento de Física, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013); Universidad de Santiago de Chile, USACH, CEDENNA, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013) 
 Universidad de Santiago de Chile, USACH, CEDENNA, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013); Universidad Mayor, Centro de Nanotecnología Aplicada, Facultad de Ciencias, Providencia, Chile (GRID:grid.412199.6) (ISNI:0000 0004 0487 8785) 
 Universidad Mayor, Centro de Nanotecnología Aplicada, Facultad de Ciencias, Providencia, Chile (GRID:grid.412199.6) (ISNI:0000 0004 0487 8785); Universidad de Mendoza, CONICET and Facultad de Ingeniería, Mendoza, Argentina (GRID:grid.441701.7) (ISNI:0000 0001 2163 0608) 
 Universidad de Santiago de Chile, USACH, CEDENNA, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013); Universidad de Chile, Departamento de Física, Facultad de Ciencias, Santiago, Chile (GRID:grid.443909.3) (ISNI:0000 0004 0385 4466) 
 Universidad de Santiago de Chile, USACH, CEDENNA, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013); Universidad Mayor, Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Santiago, Chile (GRID:grid.412199.6) (ISNI:0000 0004 0487 8785) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473292323
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.