Abstract

In glaucoma, retinal ganglion cells degenerate progressively, leading to visual field loss and blindness. Presently, the only treatment strategy for glaucoma is lowering the intraocular pressure. However, there are cases in which patients develop progressive visual field loss even though their intraocular pressures are within normal ranges. Therefore, the development of novel therapeutic strategies is an urgent endeavor. Besides high intraocular pressure, several other factors have been proposed to be associated with glaucoma progression, e.g., myopia, blood flow impairment, and amyloid β accumulation. We have previously reported that hop flower extracts possess γ-secretase inhibitory activities and reduce amyloid β deposition in the brains of Alzheimer’s disease model mice. In the current study, we showed that administration of hop flower extracts to glutamate-aspartate transporter (GLAST) knockout mice, the glaucoma model mice, attenuated glaucomatous retinal ganglion cell degeneration. Preservation of retinal ganglion cells in hop flower extract-administered mice was confirmed using optical coherence tomography, confocal scanning laser ophthalmoscopy, and retinal flatmount and histological evaluations. Hop flower extracts are, therefore, deemed a possible candidate as a novel therapeutic agent to treat glaucoma.

Details

Title
Hop flower extracts mitigate retinal ganglion cell degeneration in a glaucoma mouse model
Author
Hasegawa Tomoko 1 ; Ikeda, Hanako O 2 ; Iwai Sachiko 2 ; Sasaoka Norio 3 ; Kakizuka Akira 3 ; Tsujikawa Akitaka 2 

 Kyoto University Graduate School of Medicine, Department of Ophthalmology and Visual Sciences, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033); Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan (GRID:grid.54432.34) (ISNI:0000 0004 0614 710X) 
 Kyoto University Graduate School of Medicine, Department of Ophthalmology and Visual Sciences, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033) 
 Kyoto University Graduate School of Biostudies, Laboratory of Functional Biology, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473302576
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.