Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.

Details

Title
Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics
First page
117
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2473500679
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.