Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The second Cabauw Intercomparison of Nitrogen Dioxide measuring Instruments (CINDI-2) took place in Cabauw (the Netherlands) in September 2016 with the aim of assessing the consistency of multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of tropospheric species (NO2, HCHO, O3, HONO, CHOCHO and O4). This was achieved through the coordinated operation of 36 spectrometers operated by 24 groups from all over the world, together with a wide range of supporting reference observations (in situ analysers, balloon sondes, lidars, long-path DOAS, direct-sun DOAS, Sun photometer and meteorological instruments).

In the presented study, the retrieved CINDI-2 MAX-DOAS trace gas (NO2, HCHO) and aerosol vertical profiles of 15 participating groups using different inversion algorithms are compared and validated against the colocated supporting observations, with the focus on aerosol optical thicknesses (AOTs), trace gas vertical column densities (VCDs) and trace gas surface concentrations. The algorithms are based on three different techniques: six use the optimal estimation method, two use a parameterized approach and one algorithm relies on simplified radiative transport assumptions and analytical calculations. To assess the agreement among the inversion algorithms independent of inconsistencies in the trace gas slant column density acquisition, participants applied their inversion to a common set of slant columns. Further, important settings like the retrieval grid, profiles of O3, temperature and pressure as well as aerosol optical properties and a priori assumptions (for optimal estimation algorithms) have been prescribed to reduce possible sources of discrepancies.

The profiling results were found to be in good qualitative agreement: most participants obtained the same features in the retrieved vertical trace gas and aerosol distributions; however, these are sometimes at different altitudes and of different magnitudes. Under clear-sky conditions, the root-mean-square differences (RMSDs) among the results of individual participants are in the range of 0.01–0.1 for AOTs, (1.5–15) ×1014molec.cm-2 for trace gas (NO2, HCHO) VCDs and (0.3–8)×1010molec.cm-3 for trace gas surface concentrations. These values compare to approximate average optical thicknesses of 0.3, trace gas vertical columns of 90×1014molec.cm-2 and trace gas surface concentrations of 11×1010molec.cm-3 observed over the campaign period. The discrepancies originate from differences in the applied techniques, the exact implementation of the algorithms and the user-defined settings that were not prescribed.

For the comparison against supporting observations, the RMSDs increase to a range of 0.02–0.2 against AOTs from the Sun photometer, (11–55)×1014molec.cm-2 against trace gas VCDs from direct-sun DOAS observations and (0.8–9)×1010molec.cm-3 against surface concentrations from the long-path DOAS instrument. This increase in RMSDs is most likely caused by uncertainties in the supporting data, spatiotemporal mismatch among the observations and simplified assumptions particularly on aerosol optical properties made for the MAX-DOAS retrieval.

As a side investigation, the comparison was repeated with the participants retrieving profiles from their own differential slant column densities (dSCDs) acquired during the campaign. In this case, the consistency among the participants degrades by about 30% for AOTs, by 180% (40%) for HCHO (NO2) VCDs and by 90% (20%) for HCHO (NO2) surface concentrations.

In former publications and also during this comparison study, it was found that MAX-DOAS vertically integrated aerosol extinction coefficient profiles systematically underestimate the AOT observed by the Sun photometer. For the first time, it is quantitatively shown that for optimal estimation algorithms this can be largely explained and compensated by considering biases arising from the reduced sensitivity of MAX-DOAS observations to higher altitudes and associated a priori assumptions.

Details

Title
Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign
Author
Jan-Lukas Tirpitz 1 ; Frieß, Udo 1   VIAFID ORCID Logo  ; Hendrick, François 2 ; Alberti, Carlos 3 ; Allaart, Marc 4 ; Apituley, Arnoud 4   VIAFID ORCID Logo  ; Bais, Alkis 5   VIAFID ORCID Logo  ; Beirle, Steffen 6   VIAFID ORCID Logo  ; Berkhout, Stijn 7   VIAFID ORCID Logo  ; Bognar, Kristof 8   VIAFID ORCID Logo  ; Bösch, Tim 9   VIAFID ORCID Logo  ; Bruchkouski, Ilya 10 ; Cede, Alexander 11 ; Chan, Ka Lok 12 ; den Hoed, Mirjam 4 ; Donner, Sebastian 6   VIAFID ORCID Logo  ; Drosoglou, Theano 5 ; Fayt, Caroline 2 ; Friedrich, Martina M 2 ; Frumau, Arnoud 13   VIAFID ORCID Logo  ; Gast, Lou 7 ; Gielen, Clio 14 ; Gomez-Martín, Laura 15   VIAFID ORCID Logo  ; Hao, Nan 16 ; Hensen, Arjan 13 ; Henzing, Bas 13   VIAFID ORCID Logo  ; Hermans, Christian 2 ; Jin, Junli 17 ; Kreher, Karin 18 ; Kuhn, Jonas 19 ; Lampel, Johannes 20   VIAFID ORCID Logo  ; Ang, Li 21 ; Liu, Cheng 22   VIAFID ORCID Logo  ; Liu, Haoran 22 ; Ma, Jianzhong 23   VIAFID ORCID Logo  ; Merlaud, Alexis 2 ; Peters, Enno 24   VIAFID ORCID Logo  ; Pinardi, Gaia 2   VIAFID ORCID Logo  ; Piters, Ankie 4 ; Platt, Ulrich 19 ; Puentedura, Olga 15   VIAFID ORCID Logo  ; Richter, Andreas 9   VIAFID ORCID Logo  ; Schmitt, Stefan 1 ; Spinei, Elena 25 ; Deborah Stein Zweers 4   VIAFID ORCID Logo  ; Strong, Kimberly 8   VIAFID ORCID Logo  ; Swart, Daan 7   VIAFID ORCID Logo  ; Tack, Frederik 2 ; Tiefengraber, Martin 26 ; van der Hoff, René 7 ; Michel van Roozendael 2 ; Vlemmix, Tim 4   VIAFID ORCID Logo  ; Vonk, Jan 7 ; Wagner, Thomas 6 ; Wang, Yang 6   VIAFID ORCID Logo  ; Wang, Zhuoru 16 ; Wenig, Mark 27 ; Wiegner, Matthias 27 ; Wittrock, Folkard 9 ; Xie, Pinhua 21 ; Xing, Chengzhi 22 ; Xu, Jin 21 ; Yela, Margarita 15 ; Zhang, Chengxin 22   VIAFID ORCID Logo  ; Zhao, Xiaoyi 28 

 Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany 
 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium 
 Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany; now at: Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 
 Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands 
 Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 
 Max Planck Institute for Chemistry, Mainz, Germany 
 National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands 
 Department of Physics, University of Toronto, Toronto, Canada 
 Institute for Environmental Physics, University of Bremen, Bremen, Germany 
10  National Ozone Monitoring Research and Education Center (NOMREC), Belarusian State University, Minsk, Belarus 
11  LuftBlick Earth Observation Technologies, Mutters, Austria; NASA-Goddard Space Flight Center, Greenbelt, MD, USA 
12  Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany; now at: Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, Germany 
13  Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, the Netherlands 
14  Royal Belgian Institute for Space Aeronomy, Brussels, Belgium; now at: Institute for Astronomy, KU Leuven, Leuven, Belgium 
15  National Institute of Aerospatial Technology (INTA), Madrid, Spain 
16  Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany 
17  Meteorological Observation Centre, China Meteorological Administration, Beijing, China 
18  BK Scientific GmbH, Mainz, Germany 
19  Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany; Max Planck Institute for Chemistry, Mainz, Germany 
20  Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany; Airyx GmbH, Justus-von-Liebig-Straße 14, Eppelheim, Germany 
21  Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China 
22  School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China 
23  Chinese Academy of Meteorology Science, China Meteorological Administration, Beijing, China 
24  Institute for Environmental Physics, University of Bremen, Bremen, Germany; now at: Institute for Protection of Maritime Infrastructures, Bremerhaven, Germany 
25  NASA-Goddard Space Flight Center, Greenbelt, MD, USA; now at: Virginia Polytechnic Institute and State University, Blacksburg, VA, USA 
26  LuftBlick Earth Observation Technologies, Mutters, Austria; Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria 
27  Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany 
28  Department of Physics, University of Toronto, Toronto, Canada; now at: Air Quality Research Division, Environment and Climate Change Canada, Vancouver, Canada 
Pages
1-35
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2474771694
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.