Full Text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Abstract: The use of the gesture using hands, face, and body positions, establish a form of man-machine communication that has yet to be studied deeply and widely. The purpose of this paper is to illustrate the feasibility of gestural recognition performed with the hand by using a wearable (MYO), which captures the electromyographic (EMG) signals produced by the forearm's muscles, precisely by forming and maintaining the gesture. A gestural dictionary of hand poses was implemented that can be used for similar research, especially in human-machine control tasks interaction. Red neuronal convolucional (CNN) (Zhai, Jelfs, Chan, & Tin, 2017), Redes neuronales artificiales (RNA), Análisis discriminante lineal (LDA) (Menon et al., 2017; Zhai et al., 2017), Máquinas vectoriales de apoyo (SVM)-RBF (Kakoty et al., 2016), Vecino más cercano (k-NN) (J. Kim, Mastnik, & André, 2008), entre otros.

Details

Title
Análisis de exactitud de reconocimiento gestual aplicando SVM y k-NN en señales EMG
Author
Pomboza-Junez, Gonzalo 1 ; Holgado-Terriza, Juan A 2 

 Carrera de Informática Aplicada a la Educación, Universidad Nacional de Chimborazo, Riobamba, Ecuador 
 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, Granada, España 
Pages
15-28
Publication year
2020
Publication date
Dec 2020
Publisher
Associação Ibérica de Sistemas e Tecnologias de Informacao
ISSN
16469895
Source type
Scholarly Journal
Language of publication
Spanish
ProQuest document ID
2474915289
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.