Full text

Turn on search term navigation

Copyright © 2021 Yanzhu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Asphalt suffers from a series of aging processes in the natural environment. This is a significant factor in asphalt pavement diseases. Research of the properties of the decay processes in the natural weathering of asphalt will be helpful in distinguishing the characteristics of the various types of asphalt and in the selection of pavement materials. Neat asphalt A70, a styrene-butadiene-styrene- (SBS-) modified asphalt, and crumb-rubber-modified asphalt AR are exposed to outdoor conditions to weather naturally. This process is traced by testing the basic physical properties and the surface free energy of asphalts, using the sessile drop method. Results illustrate that the basic physical properties of asphalt change significantly during the natural weathering process and that the rubber asphalt has the superior aging resistance, while the neat asphalt A70 has a high aging susceptibility. Furthermore, the presence of the SBS and rubber-powder modifiers transforms the change trend of the surface free energy of neat asphalt. The adhesion work between aggregate and asphalt can be used to quantitatively evaluate the adhesive properties between them. Meanwhile, the presence of moisture between the asphalt and aggregate changes cohesive failure into adhesive failure.

Details

Title
Evaluation of the Physical and Adhesive Properties of Natural Weathering Asphalt
Author
Wang, Yanzhu 1   VIAFID ORCID Logo  ; Wang, Xudong 2   VIAFID ORCID Logo  ; Zhou, Xingye 3 ; Yang, Guang 1 ; Zhang, Lei 3 

 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China 
 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Institute of Highway, Ministry of Transport, Beijing 100088, China 
 Research Institute of Highway, Ministry of Transport, Beijing 100088, China 
Editor
Meng Guo
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2476479400
Copyright
Copyright © 2021 Yanzhu Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/