It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Interfacial thermal resistance (ITR) is a critical property for the performance of nanostructured devices where phonon mean free paths are larger than the characteristic length scales. The affordable, accurate and reliable prediction of ITR is essential for material selection in thermal management. In this work, the state-of-the-art machine learning methods were employed to realize this. Descriptor selection was conducted to build robust models and provide guidelines on determining the most important characteristics for targets. Firstly, decision tree (DT) was adopted to calculate the descriptor importances. And descriptor subsets with topX highest importances were chosen (topX-DT, X = 20, 15, 10, 5) to build models. To verify the transferability of the descriptors picked by decision tree, models based on kernel ridge regression, Gaussian process regression and K-nearest neighbors were also evaluated. Afterwards, univariate selection (UV) was utilized to sort descriptors. Finally, the top5 common descriptors selected by DT and UV were used to build concise models. The performance of these refined models is comparable to models using all descriptors, which indicates the high accuracy and reliability of these selection methods. Our strategy results in concise machine learning models for a fast prediction of ITR for thermal management applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China University of Petroleum, Department of Chemical Engineering, Beijing, China (GRID:grid.411519.9) (ISNI:0000 0004 0644 5174)
2 King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, Saudi Arabia (GRID:grid.45672.32) (ISNI:0000 0001 1926 5090)