It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.
Genome recoding with quadruplet codons requires a +1-frameshift-suppressor tRNA able to insert an amino acid at quadruplet codons of interest. Here the authors identify the mechanisms resulting in +1 frameshifting and the steps of the elongation cycle in which it occurs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, USA (GRID:grid.265008.9) (ISNI:0000 0001 2166 5843)
2 Columbia University, Department of Chemistry, New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729)
3 University of Pennsylvania, Department of Chemistry, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972)
4 University of California, Department of Biochemistry, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582)