Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The objective of the article involves presenting two approaches to the structure reliability analysis. The primary research method was the First Order Reliability Method (FORM). The Hasofer–Lind reliability index β in conjunction with transformation method in the FORM was adopted as the measure of reliability. The first proposal was combining NUMPRESS software with the non-commercial KRATA program. In this case, the implicit form of the random variables function was created. Limit state function was symbolically given in the standard math notation as a function of the basic random and external variables. The second analysis proposed a hybrid approach enabling the introduction of explicit forms of limit state functions to the reliability program. To create the descriptions of this formula, the neural networks were used and our own original FEM module. The combination of conventional and neural computing can be seen as a hybrid system. The explicit functions were implemented into NUMPRESS software. The values of the reliability index for different descriptions of the mathematical model of the structure were determined. The proposed hybrid approach allowed us to obtain similar results to the results from the reference method.

Details

Title
Hybrid Approach to the First Order Reliability Method in the Reliability Analysis of a Spatial Structure
First page
648
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2478283814
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.