It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Considering the emergence of severe electromagnetic interference problems, it is vital to develop electromagnetic (EM) wave absorbing materials with high dielectric, magnetic loss and optimized impedance matching. However, realizing the synergistic dielectric and magnetic losses in a single phase material is still a challenge. Herein, high entropy (HE) rare earth hexaborides (REB6) powders with coupling of dielectric and magnetic losses were designed and successfully synthesized through a facial one-step boron carbide reduction method, and the effects of high entropy borates intermedia phases on the EM wave absorption properties were investigated. Five HE REB6 ceramics including (Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6, (Ce0.2Eu0.2Sm0.2Er0.2Yb0.2)B6, (Ce0.2Y0.2Eu0.2Er0.2Yb0.2)B6, (Ce0.2Y0.2Sm0.2 Eu0.2Yb0.2)B6, and (Nd0.2Y0.2Sm0.2Eu0.2 Yb0.2)B6 possess CsCl-type cubic crystal structure, and their theoretical densities range from 4.84 to 5.25 g/cm3. (Ce0.2Y0.2Sm0.2Er0.2 Yb0.2)B6 powders with the average particle size of 1.86 µm were found to possess the best EM wave absorption properties among these hexaborides. The RLmin value of (Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6 reaches −33.4 dB at 11.5 GHz at thickness of 2 mm; meanwhile, the optimized effective absorption bandwidth (EAB) is 3.9 GHz from 13.6 to 17.5 GHz with a thickness of 1.5 mm. The introduction of HE REBO3 (RE = Ce, Y, Sm, Eu, Er, Yb) as intermediate phase will give rise to the mismatching impedance, which will further lead to the reduction of reflection loss. Intriguingly, the HEREB6/HEREBO3 still possess wide effective absorption bandwidth of 4.1 GHz with the relative low thickness of 1.7 mm. Considering the better stability, low density, and good EM wave absorption properties, HE REB6 ceramics are promising as a new type of EM wave absorbing materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Aerospace Research Institute of Materials & Processing Technology, Science and Technology on Advanced Functional Composite Laboratory, Beijing, China (GRID:grid.459319.3) (ISNI:0000 0001 0175 0741)
2 Zhengzhou University of Aeronautics, Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou, China (GRID:grid.464501.2) (ISNI:0000 0004 1799 3504)
3 Zibo Firststar New Material Incorporated Co. Ltd., Zibo, China (GRID:grid.459319.3)