It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The human proteins TMTC1, TMTC2, TMTC3 and TMTC4 have been experimentally shown to be components of a new O-mannosylation pathway. Their own mannosyl-transferase activity has been suspected but their actual enzymatic potential has not been demonstrated yet. So far, sequence analysis of TMTCs has been compromised by evolutionary sequence divergence within their membrane-embedded N-terminal region, sequence inaccuracies in the protein databases and the difficulty to interpret the large functional variety of known homologous proteins (mostly sugar transferases and some with known 3D structure).
Results
Evolutionary conserved molecular function among TMTCs is only possible with conserved membrane topology within their membrane-embedded N-terminal regions leading to the placement of homologous long intermittent loops at the same membrane side. Using this criterion, we demonstrate that all TMTCs have 11 transmembrane regions. The sequence segment homologous to Pfam model DUF1736 is actually just a loop between TM7 and TM8 that is located in the ER lumen and that contains a small hydrophobic, but not membrane-embedded helix. Not only do the membrane-embedded N-terminal regions of TMTCs share a common fold and 3D structural similarity with subgroups of GT-C sugar transferases. The conservation of residues critical for catalysis, for binding of a divalent metal ion and of the phosphate group of a lipid-linked sugar moiety throughout enzymatically and structurally well-studied GT-Cs and sequences of TMTCs indicates that TMTCs are actually sugar-transferring enzymes. We present credible 3D structural models of all four TMTCs (derived from their closest known homologues 5ezm/5f15) and find observed conserved sequence motifs rationalized as binding sites for a metal ion and for a dolichyl-phosphate-mannose moiety.
Conclusions
With the results from both careful sequence analysis and structural modelling, we can conclusively say that the TMTCs are enzymatically active sugar transferases belonging to the GT-C/PMT superfamily. The DUF1736 segment, the loop between TM7 and TM8, is critical for catalysis and lipid-linked sugar moiety binding. Together with the available indirect experimental data, we conclude that the TMTCs are not only part of an O-mannosylation pathway in the endoplasmic reticulum of upper eukaryotes but, actually, they are the sought mannosyl-transferases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer