Content area

Abstract

Esta tesis doctoral explora nuevas aristas al problema que enfrenta una compañía cuando debe determinar la composición y precio óptimo para un conjunto de paquetes de productos y/o servicios (bundles) que ofertará en uno o más segmentos de mercado. Se asume inicialmente que los consumidores basan su decisión en la maximización de su utilidad y que las compañías competidoras no reaccionan en el corto plazo. Posteriormente, se incorpora el supuesto de que los consumidores tienen una disposición máxima a pagar por un bundle. Bajo estas consideraciones, se definieron tres investigaciones considerando siempre múltiples bundles y: (1) un único segmento de mercado y consumidores que basan su decisión de compra sólo en la utilidad que les produce cada alternativa, (2) múltiples segmentos de mercado y consumidores que basan su decisión de compra sólo en la utilidad que les produce cada alternativa, y (3) un único segmento de mercado y consumidores que incluyen en su decisión de compra su máxima disposición a pagar.

Las tres investigaciones fueron formuladas como modelos de programación no lineal mixtos. En todos lo casos se vio si existía una expresión cerrada para determinar el precio óptimo de cada bundle cuando era conocida la composición de éstos. Solamente en la investigación (1) esto sucedió, pudiendo resolverse el problema en dos fases. Para la investigación (2) se desarrolló un algoritmo basado en búsqueda tabú y para la investigación (3) se resolvió por enumeración exhaustiva.

Los resultados más relevantes son: si los bundles son confeccionados considerando simultáneamente múltiples segmentos de mercado, la composición escogida para ellos puede no incluir la composición óptima para cada segmento de mercado de manera individual y al incluir la máxima disposición a pagar de los consumidores, el resultado obtenido disminuye significativamente el beneficio esperado de la compañía respecto a no considerar esta máxima disposición a pagar, dado que la composición escogida no es la misma.

Abstract (AI English translation)

Information popover about translation disclaimer

This doctoral thesis explores new edges to the problem that a company faces when it must determine the composition and optimal price for a set of packages of products and/or services (bundles) that it will offer in one or more market segments. It is initially assumed that consumers base their decision on the maximization of their utility and that competing companies do not react in the short term. Subsequently, the assumption that consumers have a maximum willingness to pay for a bundle is incorporated. Under these considerations, three investigations were defined considering always multiple bundles and: (1) a single market segment and consumers who base their purchase decision only on the utility that each alternative produces, (2) multiple market segments and consumers who they base their purchase decision solely on the utility that each alternative produces, and (3) a single market segment and consumers who include their maximum willingness to pay in their purchase decision.

The three investigations were formulated as mixed nonlinear programming models. In all cases it was seen if there was a closed expression to determine the optimal price of each bundle when the composition of these was known. Only in research (1) did this happen, and the problem could be solved in two phases. For research (2) an algorithm based on tabu search was developed and for research (3) it was resolved by exhaustive enumeration.

The most relevant results are: if the bundles are made simultaneously considering multiple market segments, the composition chosen for them may not include the optimal composition for each market segment individually and by including the maximum willingness to pay of consumers, the The result obtained significantly decreases the company's expected profit with respect to not considering this maximum willingness to pay, given that the chosen composition is not the same.

Details

1010268
Business indexing term
Title
Price Determination and Optimal Composition for a Set of Multiple Bundles that Will Be Introduced to Multiple Market Segments
Number of pages
95
Publication year
2018
Degree date
2018
School code
1770
Source
DAI-A 82/3(E), Dissertation Abstracts International
ISBN
9798672159942
University/institution
Pontificia Universidad Catolica de Chile (Chile)
University location
Chile
Degree
Eng.D.
Source type
Dissertation or Thesis
Language
Spanish
Document type
Dissertation/Thesis
Dissertation/thesis number
28181814
ProQuest document ID
2483119900
Document URL
https://www.proquest.com/dissertations-theses/price-determination-optimal-composition-set/docview/2483119900/se-2?accountid=208611
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Database
ProQuest One Academic