Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In a battery management system (BMS), battery equalizer is used to achieve voltage consistency between series connected battery cells. Recently, serious inconsistency has been founded to exist in retired batteries, and traditional equalizers are slow or inefficient to handle the situation. The multicell-to-multicell (MC2MC) topology, which can directly transfer energy from consecutive strong cells to consecutive weak cells, is promising to solve the problem, but its performance is limited by the existing converter. Therefore, this paper proposes an enhanced MC2MC equalizer based on a novel bipolar-resonant LC converter (BRLCC), which supports flexible and efficient operation modes with stable balancing power, can greatly improve the balancing speed without much sacrificing the efficiency. Mathematical analysis and comparison with typical equalizers are provided to illustrate its high balancing speed and good efficiency. An experimental prototype for 8 cells is built, and the balancing powers under different operation modes are from 1.426 W to 12.559 W with balancing efficiencies from 84.84% to 91.68%.

Details

Title
An Enhanced Multicell-to-Multicell Battery Equalizer Based on Bipolar-Resonant LC Converter
First page
293
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2484172534
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.