It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer