It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a method for design multi-section proportional directional valve Throttle grooves with ANN method, which aims at getting a better flow stability. There exists a coupling matter during the opening and closing process between the throttling notches, so that it’s difficult to parameterize the complex flow field characteristics Cd and the structure boundary of the spool grooves. However, in this paper, an ANN was built with data from CFD results, while the typical structural parameters (U type, the O-type and C-type), operating parameters was input vectors, the discharge coefficient as output vectors. Meanwhile, all of the needed data is taken from the three-dimensional CFD analysis, which are organized properly and verified by a bench scale test on a rig. Then, with throttling stiffness as optimization objective to evaluate flow stability, an optimal design process is carried out to optimize to optimize the structure of coupling grooves with ANN models and genetic algorithm. Ultimately, the optimized structure is verified better by the physical test on test rig, therefore, the significance of design method is proved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer