Abstract

Friction is the resisting force between two bodies having relative motion. These bodies can be solid surfaces, fluid films or elements sliding against each other. There are many devices used to overcome sliding friction which include wheels and bearings. Ball bearings are used in many high speed and high precision machine tools because of their high productivity. A Crank-Rocker four bar mechanism consists of 4 linkages and 4 nodes. These nodes perform complex motions especially the coupler-rocker joint. In order to reduce the friction between these relatively moving links, ball bearings can be introduced. The coupler-rocker bearing oscillates about some axis as well as the raceways have some relative motion. Heat generation rate is not known for bearings performing this type of complex motion. This paper describes the mathematical modelling and thermal analysis of coupler-rocker bearing. Heat generation in the bearing can be estimated using this model. This can be countered by having proper lubrication and speed of bearing.

Details

Title
Mathematical Modelling and Transient Thermal Analysis of Coupler-Rocker Bearing
Author
Abdullah, Jamil; Baharom, Masri B; Tamiru Alemu Lemma
Section
Renewable and Non-renewable Energy Resources and Power Generation
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2487976239
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.