Abstract

At present for processing of complex geometrical channels of workpieces electrochemical dimensional processing, vibro-impact machining and vibro-extruding are widely used. However combined electrochemical mechanical processing, that unites anodic dissolution and plastic flow of material in space and time, provides the required characteristics of surface layer. Local action anodic dissolution changes cold work amount and accelerates dissolution of micro- and macro-cusps, this causes annealing of physical and mechanical parameters in processed segments and accross the whole surface profile the required strengthening degree is attained.

The authors examine annealing model for microsurface by grain displacement in channel where extrusion forcing is dictated by grains size and profile of narrow blade channel and also by actual processing conditions. Operating conditions that are recommended for implementation of combined electrochemical mechanical processing of impeller and turbine type workpieces are found by experiments.

In consequence of field research they determined availability of standard microgeometry across the whole surface profile by combined processing with vibrations hashing with up to 2030 Hz frequency and low voltage current (in operation range from 1,2 till 1,8 V). Therein technological cycle decreases up to two fold, this reduces inadmissible jumping of blade edges and dimensional allowance.

Details

Title
Achievement of required surface roughnesses in complex profile channels by dynamic combined processing
Author
Boldyrev, Alexander I; Sukhochev, Gennady A; Boldyrev, Alexander A; Silaev, Denis V; Sokolnikov, Vasily N
Section
1 Fundamentals of mechanics, dynamics and tribology of machines
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2488034416
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.