Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With emerging treatment approaches, it is crucial to correctly diagnose and monitor hereditary and acquired polyneuropathies. This study aimed to assess the validity and accuracy of magnet resonance imaging (MRI)-based muscle volumetry.Using semi-automatic segmentations of upper- and lower leg muscles based on whole-body MRI and axial T1-weighted turbo spin-echo sequences, we compared and correlated muscle volumes, and clinical and neurophysiological parameters in demyelinating Charcot-Marie-Tooth disease (CMT) (n = 13), chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 27), and other neuropathy (n = 17) patients.The muscle volumes of lower legs correlated with foot dorsiflexion strength (p < 0.0001), CMT Neuropathy Score 2 (p < 0.0001), early gait disorders (p = 0.0486), and in CIDP patients with tibial nerve conduction velocities (p = 0.0092). Lower (p = 0.0218) and upper (p = 0.0342) leg muscles were significantly larger in CIDP compared to CMT patients. At one-year follow-up (n = 15), leg muscle volumes showed no significant decrease.MRI muscle volumetry is a promising method to differentiate and characterize neuropathies in clinical practice.

Details

Title
Semi-Automatic MRI Muscle Volumetry to Diagnose and Monitor Hereditary and Acquired Polyneuropathies
First page
202
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2488298439
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.