It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
People with Parkinson’s (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias. The Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is the gold standard for monitoring Parkinson’s disease progression but requires a neurologist to administer and therefore is not an ideal instrument to continuously evaluate short-term disease fluctuations. We investigated the feasibility of using speech to detect changes in medication states, based on expectations of subtle changes in voice and content related to dopaminergic levels. We calculated acoustic and prosodic features for three speech tasks (picture description, reverse counting, and diadochokinetic rate) for 25 PWP, each evaluated “ON” and “OFF” DRT. Additionally, we generated semantic features for the picture description task. Classification of ON/OFF medication states using features generated from picture description, reverse counting and diadochokinetic rate tasks resulted in cross-validated accuracy rates of 0.89, 0.84, and 0.60, respectively. The most discriminating task was picture description which provided evidence that participants are more likely to use action words in ON than in OFF state. We also found that speech tempo was modified by DRT. Our results suggest that automatic speech assessment can capture changes associated with the DRT cycle. Given the ease of acquiring speech data, this method shows promise to remotely monitor DRT effects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 IBM T.J. Watson Research Center, Yorktown Heights, USA (GRID:grid.481554.9)
2 Pfizer Digital Medicine & Translational Imaging: Early Clinical Development, Cambridge, USA (GRID:grid.481554.9)
3 Tufts University School of Medicine and Tufts Medical Center, Department of Neurology, Boston, USA (GRID:grid.429997.8) (ISNI:0000 0004 1936 7531)
4 Pfizer Digital Medicine & Translational Imaging: Early Clinical Development, Cambridge, USA (GRID:grid.429997.8)