It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We propose a quantum inverse iteration algorithm, which can be used to estimate ground state properties of a programmable quantum device. The method relies on the inverse power iteration technique, where the sequential application of the Hamiltonian inverse to an initial state prepares the approximate ground state. To apply the inverse Hamiltonian operation, we write it as a sum of unitary evolution operators using the Fourier approximation approach. This allows to reformulate the protocol as separate measurements for the overlap of initial and propagated wavefunction. The algorithm thus crucially depends on the ability to run Hamiltonian dynamics with an available quantum device, and can be used for analog quantum simulators. We benchmark the performance using paradigmatic examples of quantum chemistry, corresponding to molecular hydrogen and beryllium hydride. Finally, we show its use for studying the ground state properties of relevant material science models, which can be simulated with existing devices, considering an example of the Bose-Hubbard atomic simulator.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Exeter, Department of Physics and Astronomy, Exeter, UK (GRID:grid.8391.3) (ISNI:0000 0004 1936 8024); ITMO University, Saint Petersburg, Russia (GRID:grid.35915.3b) (ISNI:0000 0001 0413 4629); NORDITA, KTH Royal Institute of Technology and Stockholm University, Stockholm, Sweden (GRID:grid.10548.38) (ISNI:0000 0004 1936 9377)