Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-G accelerometers are mainly used for motion measurement in some special fields, such as projectile penetration and aerospace equipment. This paper mainly explores the wavelet threshold denoising and wavelet packet threshold denoising in wavelet analysis, which is more suitable for high-G piezoresistive accelerometers. In this paper, adaptive decomposition and Shannon entropy criterion are used to find the optimal decomposition layer and optimal tree. Both methods use the Stein unbiased likelihood estimation method for soft threshold denoising. Through numerical simulation and Machete hammer test, the wavelet threshold denoising is more suitable for the dynamic calibration of a high-G accelerometer. The wavelet packet threshold denoising is more suitable for the parameter extraction of the oscillation phase.

Details

Title
Calibration Analysis of High-G MEMS Accelerometer Sensor Based on Wavelet and Wavelet Packet Denoising
First page
1231
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2489069025
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.